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1. Introduction.

Let Ω be an exterior domain in R2 with a compact C2-boundary ∂Ω. Without
loss of generality we may assume (0, 0) /∈ Ω. In this paper, we will consider the
Cauchy-Dirichlet problem for the wave equation. For a function u = u(t, x) defined
for (t, x) ∈ (0,∞) × Ω, we study the following initial-boundary value problem for
the wave equation:

utt(t, x)−∆u(t, x) = 0 in (0,∞)× Ω, (1.1)

u(t, x) = 0 on (0,∞)× ∂Ω, (1.2)

u(t, x) = u0, ut(t, x) = u1 on {t = 0} × Ω. (1.3)

Throughout this paper, we use the usual notations. For f, g ∈ L2(Ω),

(f, g) =
∫

Ω
f(x)g(x)dx, ‖f‖L2(Ω) =

√
(f, f)

and we let χΩ to be the characteristic function of Ω. Furthermore, the total energy
E(t) is defined as

E(t) =
1

2

{
‖∇u(t, ·)‖2

L2(Ω) + ‖ut(t, ·)‖2
L2(Ω)

}
. (1.4)

Let R > 0 be an arbitrary real number so that ∂Ω ⊂ BR(0) ≡ {x ∈ R2; |x| < R}.
Then, the local energy is defined as

EΩ(R)(t) =
1

2

∫

Ω(R)

{
|∇u(t, x)|2 + |ut(t, x)|2

}
dx, (1.5)

where we set Ω(R) ≡ Ω ∩ BR(0). We are concerned with a decay estimate of the
local energy for a solution to (1.1), (1.2) and (1.3). We have some results on a decay
of a local energy for the wave equations. For instance, we refer to [1], [4], [5], [7],
[8], [9]. In particular, the results in [4], [5], [8] are much related to our interest in
this paper.

First we show the unique existence of a weak solution in C([0,∞);H1
0 (Ω)) ∩

C1([0,∞);L2(Ω)) to (1.1), (1.2) and (1.3) defined in the following. We can treat the
higher dimension case that Ω ∈ Rn, n ≥ 2. In this occasion, we shallproceed our
argument based on the energy identity.
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Theorem 1.1 For each (u0, u1) ∈ H1
0 (Ω) × L2(Ω), there exists a unique solution

u ∈ C([0,∞);H1
0 (Ω)) ∩C1([0,∞);L2(Ω)) to the problem (1.1), (1.2) and (1.3) such

that
1

2
‖∇u(t, ·)‖2

L2(Ω) +
1

2
‖ut(t, ·)‖2

L2(Ω) =
1

2
‖∇u0‖2

L2(Ω) +
1

2
‖u1‖2

L2(Ω). (1.6)

For the proof see [2]

2. Main Theorem.

We now state our main theorem on the estimate in L2 of a weak solution to (1.1),
(1.2) and (1.3) in the two space dimension case, Ω ⊂ R2. The key point is that we
choose the initial data u1 to be in the Hardy space, χΩu1 ∈ H1(R2) (refer to [4],
[5]).

First we give the definition of function spaces needed for our main theorem (refer
to [3]).

Definition 2.1 (Hardy space) The Hardy space consists of functions f in L1(Rn)
such that

‖f‖H1(Rn) =
∫

Rn
sup
r>0
|φr ∗ f(x)|dx

is finite, where φr(x) = r−nφ(r−1x) for r > 0 and φ is a smooth function on Rn with
compact support in an unit ball with center of the origin B1(0) = {x ∈ Rn; |x| < 1}.

We know that the definition dose not depend on choice of a function φ.

Definition 2.2 (functions of bounded mean oscillation) Let f be a locally
integrable in Rn, denoted by f ∈ L1

loc(R
n). We say that f is of bounded mean

oscillation (abbreviated as BMO) if

‖f‖BMO(Rn) = sup
B⊂Rn

1

|B|
∫

B
|f(x)− (f)B|dx <∞,

where the supremum ranges over all finite ball B ⊂ Rn, |B| is the n-dimensional
Lebesgue measure of B, and (f)B denotes the mean value of f over B, namely
(f)B = 1

|B|
∫
B f(x)dx.

The class of functions of BMO, modulo constants, is a Banach space with the
norm ‖ · ‖BMO defined above.

Our main theorem is the following:

Theorem 2.3 Suppose that the initial data (u0, u1) belongs to H1
0 (Ω)×  L2(Ω) and

further satisfies ‖χΩu1‖H1(R2) < +∞. Then, the solution u to the problem (1.1),
(1.2) and (1.3) satisfies

‖u(t, ·)‖2
L2(Ω) ≤ ‖u0‖2

L2(Ω) + C‖χΩu1‖2
H1(R2) (2.1)

for all t ≥ 0 with a certain constant C > 0.
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We shall prepare the decisive Fefferman-Stein inequality, which means the duality
between H1(Rn) and BMO(Rn), (H1(Rn))∗ = BMO(Rn). For the proof, see [3].

Theorem 2.4 (Fefferman-Stein inequality) There is a positive constant C de-
pending only on n such that if f ∈ H1(Rn) and g ∈ BMO(Rn), then

∣∣∣∣
∫

Rn
f(x)g(x)dx

∣∣∣∣ ≤ C‖f‖H1(Rn)‖g‖BMO(Rn).

Theorem 2.5 Assume that ∂Ω is star-shaped with respect to the origin. Let R > 0
be arbitrarily fixed such that ∂Ω ⊂ BR(0). Then, for each (u0, u1) ∈ H1

0 (Ω)×L2(Ω)
with suppu0 ∪ suppu1 ⊂ Ω(R) and further satisfies ‖χΩu1‖H1(R2) < +∞, the weak
solution u(t, x) constructed in Theorem 1.1 to (1.1), (1.2) and (1.3) satisfies

EΩ(R)(t) ≤ CE(0)(t−R)−1 (2.2)

for all t < R, where the positive constant C depends only on the initial data (u0, u1).

As is well known, the finite propagation property of the wave equation implies
that if the initial data (u0, u1) ∈ H1

0 (Ω) × L2(Ω) has a compact support, that is,
suppu0 ∪ suppu1 ⊂ Ω(R), then we have

suppu(t, ·) ⊂ Ω(R + t) (2.3)

for each t ≥ 0.
For the proof see [5]

3. Dissipative wave equation.

Our final result is concerned with the decay of solutions for the following dissi-
pative wave equation :

utt(t, x)−∆u(t, x) + ut(t, x) = 0 in (0,∞)× Ω, (3.1)

u(t, x) = 0 on (0,∞)× ∂Ω, (3.2)

u(t, x) = u0, ut(t, x) = u1 on {t = 0} × Ω. (3.3)

To state the result, we need the well-posedness of the problem (3.1), (3.2) and
(3.3).

Theorem 3.1 For each (u0, u1) ∈ H1
0 (Ω) × L2(Ω), there exists a unique solution

u ∈ C([0,∞);H1
0 (Ω)) ∩C1([0,∞);L2(Ω)) to the problem (3.1), (3.2) and (3.3) such

that

1

2
‖∇u(t, ·)‖2

L2(Ω) +
1

2
‖ut(t, ·)‖2

L2(Ω) +
∫ t

0
‖ut(s, ·)‖2

L2(Ω)ds

=
1

2
‖∇u0‖2

L2(Ω) +
1

2
‖u1‖2

L2(Ω), (3.4)

d

dt
(ut(t, ·), u(t, ·)) + ‖∇u(t, ·)‖2

L2(Ω) + (ut(t, ·), u(t, ·)) = ‖ut(t, ·)‖2
L2(Ω). (3.5)

3



Theorem 3.2 Suppose that the initial data (u0, u1) belongs to H1
0 (Ω)×  L2(Ω) and

further satisfies ‖χΩ(u0 + u1)‖H1(R2) < +∞. Then, the solution u to the problem
(3.1), (3.2) and (3.3) satisfies

(1 + t)‖u(t, ·)‖2
L2(Ω) ≤ C{‖u0‖2

H1(Ω) + ‖u1‖2
L2(Ω) + ‖χΩ(u0 + u1)‖2

H1(R2)} (3.6)

for all t ≥ 0 with a constant C > 0 independent of t ∈ [0,∞).
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