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1 Introduction

In this article, we discuss stability of solitary waves of lattice equations which describe

motion of infinite particles connected by a nonlinear spring:

(1)

{
p(t, n) = q̇(t, n),

ṗ(t, n) = V ′(q(t, n+ 1)− q(t, n))− V ′(q(t, n)− q(t, n− 1)),

where q(t, n) and p(t, n) denote the displacement and momentum of the n-th particle at

time t. A solitary wave solution is a single hump exponentialy localized solution which

does not change its shape and speed for all the time. The existence of solitary waves is

robust feature of FPU lattices due to a balance of nonlinearity and dispersion induced by

discreteness of spatial variable. This was indicated by numerics [4] before Friesecke and

Wattis [7] proved the existence of solitary waves by a variational method.

The FPU lattice equation was first studied by Fermi, Pasta and Ulam [5] who found

recurrence phenomena for (1) with V (r) = r2/2 + r3/6 (α-FPU lattice) and V (r) =

r2/2+r4/24 (β-FPU lattice). A similar phenomena was observed by Zabusky and Kruskal

[20] for KdV which is considered to be one of continuous limit of (1). They found solitons

which consists of multiple solitary waves that are stable, collide each other elastically, can

be back to the initial state after a certain time.

It is conjectured that recurrence phenomena does not hold rigorously except for in-

tegrable systems like KdV or the Toda lattice equation ((1) with V (r) = e−r − 1 + r)

and energy will be equally distributed to each Fourier mode after a long time if the total

energy divided by a number of particles is large enough. That is, large solitary waves are

expected to be metastable for finite FPU lattice. See [1, 19] and references therein for

metastability results of finite lattices. Recently, Martel and Merle [11, 12] proved solitary
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waves of generalized KdV equations collide inelastically. Their results seem applicable to

other non-integrable systems like BBM [13] and could be a clue to explain the conjecture.

As for infinite dimensional system (1), Friesecke and Pego [6] have proved stability

of solitary waves under the hypothesis that solitary waves are linearly stable. They also

proved the hypothesis for a small solitary waves. Since (1) lacks infinitesimal invariance

of spatial variable, solitary waves cannot be characterized as a stationary point of a

conserved quantity. Thus variational argument like [8] fails to explain stability of solitary

waves of (1). Their idea is to build up a theory analogue to [17] using the fact that

a major solitary wave outruns from other waves caused by perturbation. In fact, small

solitary waves moves inherit linear stability property of KdV solitons in an exponentially

weighted space.

One of our goal in this article is to prove every Toda 1-soliton solution is stable ([14])

without restriction of its amplitude. It is worth pointing out that stability of solitons

does not necessary follows from integrability. For example, solitons of good Boussinesq

equation are unstable if the traveling wave speed is sufficiently slow ([2]), and line solitons

for the KP-I equation are unstable to long-wave transverse perturbations. The other goal

is to explain that any linearly stable solitary waves of (3) are orbitally stable in the energy

class ([15]).

2 Main Results

Let r(t, n) = q(t, n+ 1)− q(t, n), u = t(r, p) and

(2) H(u) =
∑
n∈Z

(
1

2
p(t, n)2 + V (r(t, n))

)
.

Eq. (1) can be translated into a Hamiltonian system

(3)
du

dt
= J∇uH(u),

where J =

(
0 e∂ − 1

1− e−∂ 0

)
and e±∂ are shift operators such that (e±∂f)(n) = f(n±1).

Every finite every solution of (3) satisfies a conservation law

(4) E(u(t)) = E(u(0)) for every t ≥ 0.

A 1-soliton solution of the Toda lattice equation is given by

(5) uc(t, n) = (∂xqc(n− ct+ δ),−c∂xqc(n− ct+ δ)),
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where δ ∈ R is arbitrary, κ is a positive root of c = sinh κ
κ

> 1 and

(6) qc(x) = log
cosh{κ(x− 1)}

coshκx
.

Every 1-soliton solution of the Toda lattice equation is linearly stable.

Theorem 1 (with Pego). Let V (r) = e−r−1+r and uc(t) be a 1-soliton solution defined

by (5) and (6). Then there exist K > 0 and a ∈ (0, 2κ) such that if a solution w(t) of

w(t) of

(LFPU) ∂tw = JH ′′(uc(t))w.

satisfies

(SO) 〈w(s), J−1u̇c(s)〉 = 〈w(s), J−1∂cuc(s)〉 = 0,

(L) ‖ea(n−ct)w(t)‖l2 ≤ Ke−β(t−s)‖ea(n−cs)w(s)‖l2 for ∀ t ≥ s.

Remark 1. (SO) is a secular term condition. If w(t) satisfies (SO), then w(t) does not

include neutral modes u̇c and ∂cuc.

Remark 2. (L) was proved for small solitary waves by Friesecke-Pego ’04 for general

nonlinearities.

Theorem 2 (Stability in energy space). Let u(t) be a solution to (FPU) with u(0) =

uc0(0)+ v0. Suppose (L). Then for ∀ε > 0, ∃ δ > 0 satisfying the following: If ‖v0‖l2 < δ,

∃ c+ > 1, σ ∈ (1, c+) and x(t) such that

‖u(t)− uc0(· − x(t))‖l2 < ε,(7)

lim
t→∞

∥∥u(t)− uc+(· − x(t))
∥∥

l2(n≥σt)
= 0,(8)

sup
t∈R

|ẋ(t)− c0| = O(‖v0‖l2), lim
t→∞

ẋ(t) = c+,(9)

where uc(x) = t(rc(x), pc(x)).

Remark 3. From [6], it remains unsolved whether solitary wave solutions are stable to a

collision of solitary waves even if they are extremely small. In fact, small solitary waves

does not belong to the exponentially weighted space l2 ∩ l2a because they decay slowly as

n→ ±∞.

Remark 4. Combining our method with Schneider and Wayne [18], Hoffman and Wayne

[9] studied collision of counter-propagating solitary waves.
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3 Linearized Bäcklund transformation and stability

of Toda lattice solitons

To prove linear stability, [6] compares spectral property of linearized FPU lattice equation

with that of linearized KdV equation which is well known thanks to its integrability ([16]).

In this section, we use algebraic structure Toda lattice equation, which is also integrable.

The Toda lattice admits a Bäcklund transformation determined by the equations

(10)

{
q̇n + e−(q′n−qn) + e−(qn−q′n−1) = α,

q̇′n + e−(q′n−qn) + e−(qn+1−q′n) = α,

where α is a constant. Presuming (10) holds, if q(t) = qn(t) is a solution to (1), then

q′(t, n) = q′n(t) is necessarily a solution to (1) and vice-versa. In particular, the Bäcklund

transformation connects the zero solution to 1-solitons: if q′(t, n) ≡ 0 and α = 2 coshκ,

then

q̇n(t) + eqn(t) + e−qn(t) = 2 coshκ,(11)

e−qn+1(t) + eqn(t) = 2 coshκ,(12)

whence qn(t) = qc(n − ct + δ) and κ > 0 and x ∈ R are arbitrary constants independent

of t.

Let us now linearize (10) around q = qc(n− ct) and q′ = 0. This yields

p(t) + eqc(t)(q(t)− q′(t))− e−qc(t)(q(t)− e−∂q′(t)) = 0,(13)

p′(t) + eqc(t)(q(t)− q′(t))− e∂e−qc(t)(q(t)− e−∂q′(t)) = 0.(14)

Let Xt = {(q, p) ∈ l2a×l2a : u = ((e∂−1)q, p)satisfies (SO)}. This is a subspace correspond-

ing to states u satisfying the secular term condition. A linearized Bäcklund transformation

defines an isomorphism that connects solutions of (LFPU) in Xt and solutions of

(15)
dw

dt
= Jw.

Propostion 3. Suppose 0 < a < 2κ. Let t ∈ R. For every (q, p) ∈ Xt, there exists a

unique (q′, p′) ∈ l2a× l2a satisfying (13)–(14). Furthermore, the map (q, p) 7→ (q′, p′) defines

an isomorphism Φ(t) : Xt → l2a × l2a and The map Φc(t) and its inverse are uniformly

bounded for

sup
t∈R

(
‖Φ(t)‖B(Xt,l2a×l2a) + ‖Φ(t)−1‖B(l2a×l2a,Xt)

)
<∞.
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Theorem 1 follows from Proposition 3 and a decay estimate corresponding to (L) for

the linearized system of (3) around 0.

Lemma 4. Let a > 0, c > 1 and β = ca − 2 sinh(a/2). Then there exists a positive

constant K such that for any solution w of (15) satisfy

‖ea(·−ct)w(t)‖l2 ≤ Ke−β(t−s)‖ea(·−cs)w(s)‖l2 .

Lemma 4 follows immediately by computing the Fourier transform of w.

Finally, we will give a sketch of the proof of Proposition 3.

Sketch of the proof. Eqs. (13) and (14) can be rewritten as

(16)

{
C(t)q′ = p+ (eqc(t) − e−qc(t))q,

p′ = (eqc(t) − e∂e−qc(t)e−∂)q′ − Ĉ(t)q,

where C(t) = eqc(t)− e−qc(t)e−∂ and Ĉ(t) = eqc(t)− e∂e−qc(t) (formally Ĉ(t) = C(t)∗). Thus

to prove bijectivity of Φ(t), it suffices to prove the following.

Lemma 5. Let −2κ < a < 2κ and t ∈ R. Let C(t) be an operator on l2a, with adjoint

C∗(t) = eqc(t) − e∂e−qc(t) acting on l2−a = (l2a)
∗. Then C(t) is Fredholm, kerC(t) = {0},

kerC∗(t) = span{q̇c(t)} and RangeC(t)∗ = l2−a.

Lemma 6.

p+ (eqc(t) − e−qc(t))q ⊥ kerC(t)∗.

Remark 5. Friesecke and Pego studied the spectrum property of a differential-difference

operator of the second order to prove (L) for small solitary waves. Here, we limit ourselves

to the Toda lattice equation and reduce the problem of the property of the first order

difference operator C(t). Our method is a kind of Darboux transformation, which is quite

useful to investigate spectrum of linearized equation (see [16, 3]).

4 Stability in the energy space

In this section, we discuss stability of solitary wave solutions in l2 × l2. We will prove

Theorem 2 using the fact that the main solitary wave outruns from perturbed waves. The

idea was first used by Pego and Weinstein [17] to prove asymptotic stability of 1-soliton

solutions of KdV equation in an exponentially weighted space. Later Friesecke and Pego
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[6] applied the same idea to the FPU lattice equation. Recently, Martel and Merle [10]

proved asymptotic stability of KdV 1-soliton in H1(R) by using a virial type estimate.

Unfortunately, a viral type estimate may not be true around solitary wave solutions of

the FPU lattice equation. In fact, [10] used orbital stability result to prove a virial type

estimate. Unlike KdV equation, we cannot prove orbital stability independently by using

conservation laws of the FPU lattice equation. Rather, we need to prove orbital and

asymptotic stability at the same time.

Let us decompose a solution of (3) into a sum of the main solitary wave part and

remainder part

(17) u(t, n) = uc(t)(n− x(t)) + v(t, n),

where c(t) and x(t) are speed and phase of the main solitary wave. Substituting (17) into

(3), we have

(18)
dv

dt
= JH ′′(uc(t)(γ(t)))v(t) + l1(t) +N1(t),

where

l1(t) =− ċ(t)∂cuc(t)(γ(t))−
ẋ(t)− c(t)

c(t)
u̇c(t)(γ(t)),

N1(t) =J
{
H ′(uc(t)(γ(t)) + v(t))−H ′(uc(t)(γ(t)))−H ′′(uc(t)(γ(t)))v(t)

}
.

Now, we impose the following secular term condition for v and v2.

〈v, J−1u̇c(γ)〉 = 0,(19)

〈v2, J
−1∂cuc(γ)〉 = 0.(20)

Differentiating (19) and (20) with respect to t, we have modulation equations on c(t) and

x(t).

Lemma 7. Let u(t) be a solution to (3) and v1(t) be a solution to (21). Suppose that c

and γ are C1-functions satisfying (19) and (20) on [0, T ] and inft∈[0,T ] c(t) > 1. Then it

holds for t ∈ [0, T ] that

ċ(t) = O(‖v1(t)‖2
W (t) + ‖v2(t)‖2

X(t)),

ẋ(t)− c(t) = O(‖v1(t)‖W (t) + (‖v(t)‖l2 + ‖v1(t)‖l2)‖v2(t)‖X(t)),

where ‖u‖W (t) =
(∑

n∈Z
e−κ(c(t))|n−x(t)||u(n)|2

)1/2
, ‖u‖X(t) = e−ax(t)‖u‖l2a

and a is a con-

stant satisfying 0 < a ≤ inft∈[0,T ] κ(c(t)).
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Using the conservation law (4), we have the following.

Lemma 8. Suppose (19). Then ‖v(t)‖2
l2 . |c(t)− c0|+ ‖v0‖l2 .

In view of Lemmas 7 and 8, we find that a solitary wave solution is orbitally stable if

‖v‖W (t) is square integrable with respect to t.

The remainder term v(t) includes small solitary waves and radiation part of the so-

lution and they move more slowly compared with the main wave. Now, we will extract

a roughly decaying part of v(t) as n → ±∞, which is a hazard to apply a semigroup

estimate (L). Let v1(t) be a solution of

(21) ∂tv1 = JH ′(v1), v1(0) = v0,

and let v2(t) = v(t)− v1(t). Here v0 is a perturbation to a solitary wave solution at t = 0.

We have a virial type estimate for small v1.

Lemma 9. Let v1(t) be a solution to (21). Let c1 > 1 and x̃(t) be a C1-function satisfying

inft∈R x̃t ≥ c1. Then there exist positive numbers a0 and δ3 such that if a ∈ (0, a0) and

‖v0‖l2 ≤ δ3,

‖ψa(t)
1/2v1(t)‖2

l2 +

∫ t

0

‖ψ̃a(t)v1(s)‖2
l2ds . ‖ψa(0)1/2v0‖2

l2 ,

where ψa(t, x) = 1 + tanh a(x− x̃(t)) and ψ̃a(t, x) = a1/2 sech a(x− x̃(t)).

The above lemma use the fact that the maximum speed of waves of v1 is at most

1 + o(1). Lemma 9 implies

(22) ∞∞
0 ‖v1‖2

W (t)dt . ‖v0‖2
l2 .

Subtracting (21) from (18), we obtain

(23)


dv2

dt
= JH ′′(uc(t)(γ(t)))v2 + l1(t) +N2(t),

v2(0) = uc0(τ0)− uc(0)(γ(0)),

where N2(t) = N1(t) − JH ′(v1(t)) + JH ′′(uc(t)(γ(t)))v1. Note that initial data of v2 is

exponentially localized and so is the nonlinear term N2. In fact,

N2 ' a linear combination of ucv1, v
2
2, v1v2.

Hence by applying Theorem 1 or [6] to (23), we obtain

‖v2(t)‖X(t) +

(∫ ∞

0

‖v2(t)‖2
X(t)dt

)1/2

. ‖v0‖l2 +

(∫ ∞

0

‖v1(t)‖2
W (t)dt

)1/2

.
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Thus we have

(24) ‖v2(t)‖L2
t (W (t)) . ‖v2(t)‖L2

t (X(t)) . ‖v0‖l2 .

Combining (22) and (24) with Lemmas 9 and 8, we obtain (7) and (9).

Once we prove (7), we can prove virial identity around the main solitary wave solution

as in [10] which implies (8).

Appendix

Proof of Lemma 8. By (19), we have 〈H ′(uc), v〉 = 〈J−1u̇c, v〉 = 0. Since H(u(t)) is inde-

pendent of t,

δH := H(u(0))−H(uc0)

= H(uc(t)) + 〈H ′(uc(t)), v〉+
1

2
〈H ′′(uc)v, v〉 −H(uc0) +O(‖v‖3

l2)

≥ 1

4
‖v(t)‖2

l2 +O(|c(t)− c0|+ ‖v(t)‖3
l2).

Since δH = O(‖v0‖l2), we have Lemma 8.

Proof of Lemma 7. Differentiating (19) with respect to t and substituting (18) into the

resulting equation, we have

d

dt
〈v, J−1u̇c(γ)〉

=〈v̇, J−1u̇c(γ)〉+
ẋ

c
〈v, J−1üc(γ)〉+ ċ〈v, J−1∂cu̇c(γ)〉

=〈JH ′′(uc(γ))v, J
−1u̇c(γ))〉+ 〈v, J−1üc(γ)〉

+ 〈l1 +N1, J
−1u̇c(γ)〉+

(
ẋ

c
− 1

)
〈v, J−1üc(γ)〉+ ċ〈v, J−1∂cu̇c(γ)〉

=0.

Substituting üc = JH ′′(uc)u̇c and J∗ = −J into the above, we have

(25) ċ

{
d

dc
H(uc)− 〈v, J−1∂cu̇c(γ)〉

}
−

(
ẋ

c
− 1

)
〈v, J−1üc(γ)〉 = 〈N1, J

−1u̇c(γ)〉.
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Differentiating (20) with respect to t, we have

d

dt
〈v2, J

−1∂cuc(γ)〉

=〈v̇2, J
−1∂cuc(γ)〉+

ẋ

c
〈v2, J

−1∂cu̇c(γ)〉+ ċ〈v2, J
−1∂2

cuc(γ)〉

=〈JH ′′(uc(γ))v2, J
−1∂cuc(γ))〉+ 〈v2, J

−1∂cu̇c(γ)〉

+ 〈l1 +N2, J
−1∂cuc(γ)〉+

(
ẋ

c
− 1

)
〈v2, J

−1∂cu̇c(γ)〉+ ċ〈v2, J
−1∂2

cuc(γ)〉

=0.

Substituting ∂cu̇c = JH ′′(uc)∂cuc into the above, we obtain

(
ẋ

c
− 1

) {
d

dc
H(uc) + 〈v2, J

−1∂cu̇c(γ)〉
}

+ ċ
{
〈∂cuc, J

−1∂cuc〉+ 〈v2, J
−1∂2

cuc(γ)〉
}

=− 〈N2, J
−1∂cuc(γ)〉.

(26)

Since |N1(t)| . |v(t)|2 and |J−1u̇c(t, n)| . e−2κ(c)|n−x(t)| as n→∞, we have

〈N1, J
−1u̇c(γ)〉 = O(‖v(t)‖2

W (t)).

Let N2(t) = Ñ1(t) + Ñ2(t) + Ñ3(t), where

Ñ1(t) =N1(t)− JH ′(v(t)) + Jv(t),

Ñ2(t) =JH ′(v(t))− JH ′(v1(t))− Jv2(t),

Ñ3(t) =J
(
H ′′(uc(t)(γ(t)))− 1

)
v1(t).

We put G(v) := H ′(v) − H ′(0) − H ′′(0)v so that JG(v) denotes a part of Ñ1(t) that

does not interact with the solitary wave uc(γ). Since |uc(t, n)| . e−2κ(c)|n−x(t)| and a ≤
inft∈[0,T ] κ(c(t)), we have ‖uc(t)v

2‖X(t) . ‖v‖2
W (t). Hence by the definition of Ñ1 and Ñ2,

(27) ‖Ñ1(t)‖X(t) = ‖N1(t)− JG(v(t))‖X(t) . ‖v(t)‖2
W (t),

‖Ñ2(t)‖X(t) =‖JG(v(t))− JG(v1(t))‖X(t)(28)

.(‖v(t)‖l∞ + ‖v1(t)‖l∞)‖v2(t)‖X(t).

We see from (5), (6) or [6] that H ′′(uc) − 1 decays like e−2κ|n−x(t)| as n → ±∞ and for

a ∈ (0, κ(c(t))),

(29) ‖Ñ3(t)‖X(t) . ‖v1(t)‖W (t).
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Let ‖u‖X(t)∗ = eax(t)‖u‖l2−a
and ‖u‖W (t)∗ = (

∑
n∈Z

eκ(c(t))|n−x(t)||u(n)|2)1/2. In view of (25),

(26) and the fact that

sup
t∈[0,T ]

(
‖J−1üc(t)(γ(t))‖W (t)∗ + ‖J−1∂cu̇c(t)(γ(t))‖W (t)∗

)
<∞,

sup
t∈[0,T ]

(
‖J−1∂cu̇c(t)(γ(t))‖X(t)∗ + ‖J−1∂2

cuc(t)(γ(t))‖X(t)∗
)
<∞,

we have

A(t)

(
ċ(t)

ẋ(t)− c(t)

)
=

(
O(‖v(t)‖2

W (t))

O(‖v1(t)‖W (t) + (‖v(t)‖l2 + ‖v1(t)‖l2)‖v2(t)‖X(t))

)
,

where A(t) = diag(dH(uc)/dc, dH(uc)/dc) + O(‖v1(t)‖W (t) + ‖v2(t)‖X(t)). We have thus

proved Lemma 7.
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