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This talk is based on a recent joint work with Michael Ruzhansky. We introduce a
useful tool to derive new smoothing estimates from known ones. That is a comparison
principle for solutions u(t, z) = e/P=)p(x) and v(t,z) = e"9P)p(z) to evolution
equations with operators f(D,) and g(D,), where t € R and z € R™:

{ (Zat + f(Dm)) u(ta ZL‘) = 07 and { (Zat + g(Dx)) U(t’ :L‘) = 07

u(0,7) = p(z) v(0,2) = ¢(z).
In the below, we write x = (z1,...,2,), £ = (&,...,&), and D, = (Dy,Ds...,D,)
where D; denotes D, (j = 1.2....,n). In the case n = 1, we neglect 2’ = (z2,...,7,)

in natural way and just write v = x1, £ = &, and D, = D;. Similarly in the case
n = 2, we use the notation (z,y) = (x1,x2), (§,n) = (&1,&2), and (D,, Dy) = (D1, D3).

Theorem 1. Suppose n = 1. Let f,g € C'(R) be real-valued and strictly monotone
on the support of a function x on R. Let 0,7 € C°(R) be such that, for some A > 0,
we have

o© _ , 7
N7 = gehr
for all & € supp x satisfying f'(&) # 0 and ¢'(§) # 0. Then we have

IX(D2)o (De)e™ P () 22,y < AllX(Da)7(Da)e™ P (@) | 12w,

for all x € R. Consequently, for general n > 1 and for any function w on R", we
have

Jw(@)x(D;)o(D;)e™ P ()| 12 (g, xrn)
< Alw(@)x(D;)7(D;)e™PD ()| p2m, sy

where 7 =1,2,...,n.

Theorem 2. Suppose n = 2. Let f,g € C'(R?) be real-valued functions such that,
for almost allm € R, f(&,m) and g(&,n) are strictly monotone in & on the support of
a function x on R2. Let 0,7 € C°(R?) be such that, for some A > 0, we have
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for all (§,m) € supp x satisfying 0f /05(€,n) # 0 and Og/0E(§,n) # 0. Then
HX(DI’ Dy)g(Dﬂcv Dy)eitf(Dx7Dy)90 T, y) HLQ(Rthy)
< Allx(Dx, Dy)T<Dwa Dy)eitg(DmDy)SO(xv y)HLQ(Rt XRy)

for all x € R. Consequently, for general n > 2 and for any function w on R"! we
have

[w(#x)X(Dy, Di)o (D, Di)e™ PP ()| 12, )
< Allw(zx)x(D;, Dy)7(D;, Dy)e™PiPe) () || 12k, sy,
where j # k and Tp = (T1,. .., Th_1, Thy1y- -, Tn)-

We also have a comparison result for radially symmetric case. In the below, we
denote the set of the positive real numbers (0,00) by R, .

Theorem 3. Let f,g € C'(Ry) be real-valued and strictly monotone on the support
of a function x on Ry. Let o,7 € C°(R,) be such that, for some A > 0, we have

\/ff(p)ll <4 \/T(p)ll :
|f' ()M 9" (p)["
for all p € supp x satisfying f'(p) # 0 and ¢'(p) # 0. Then we have
IX(ID:2)o (1 Da e 1P Do ()| 12y < Allx(IDNT(1De e PDio ()| 2y
for all x € R™. Consequently, for any function w on R™, we have
[w(@)x(|Dal)o (| Da]) e PP () | 12 8, xrn)
< Allw(@)x(| Da)7(| Da )™ PP o (2) | 2k, -

Let us now give an important examples of the use of the comparison principle.
We can conclude that many smoothing estimates for the Schrédinger type equations
of different orders are equivalent to each other. Indeed, applying Theorem 1 in two
directions, we immediately obtain that for n =1 and [,m > 0, we have

(1) |||D |(m 1)/2 4it| Do \m HL2 . \/7H|D |z 1)/2 it D! oz )‘

for every x € R, assuming that supp ¢ C [0, +00) or (—o0,0]. Applying Theorem 2,
we similarly obtain that for n =2 and [, m > 0, we have

L2(Ry)

H |Dy|(m—1)/2€ith\Dy|m_1

#l, y)’ L2(R¢xRy)

_ H‘ D, |(=1/2itDe Dy

so(x,y)‘ -

for every x € R. On the other hand, in the case n = 1, we have easily

(3) Heitngp(;p)Hp(Rt) = ngHLQ(Rz) for all x € R,

which is a straightforward result of the fact e®P=p(x) = p(z + t). By using equality
(3), we can estimate the right hand sides of equalities (1) and (2) with [ = 1, and as a
result, we have easily the following variety of pointwise estimates in low dimensions:
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Proposition 1. Suppose n =1 and m > 0. Then we have
H ‘Dx’(mfl)ﬂeitwﬂmgp(x) HLQ(Rt) < CHQO“LQ(Rm)
for all x € R. Suppose n =2 and m > 0. Then we have

H | D, |(m=1)/2¢itDs|Dy ™!

o(T,y) < CH‘PHB(RQQ

L2(Rt><Ry)
for all x € R.

Proposition 1 with the special case m = 2 was shown by Kenig, Ponce and Vega
[1, p.56] (n = 1) and Linares and Ponce [2, p.528] (n = 2). But we can say that
these result, together with their generalization, are just corollaries of the elementary
estimate (3).

By using the comparison principle for radially symmetric case, we have also another
type of equivalence of smoothing estimates. In fact, by Theorem 3, we immediately
obtain

deﬁflﬂlAﬁé”DHQW‘

= DR

L2(R; xR7

_ H |$|aim/2|D$‘aeit|Dz‘m(pHL2(RtXRQ)’

where m > 0 and o = f — 14+ m/2. On the other hand, we know the estimate
_ i = 2
(@) ||lal*1DalPe P () <Olgllpg —(Q-n/2<B<1/2)

which was given by Sugimoto [3, Theorem 1.1]. Noticing that 1 —n/2 < § < 1/2is
equivalent to (m —n)/2 < a < (m — 1)/2, we have the following generalization of
estimate (4):

L2(R; xR7)

Proposition 2. Suppose m >0 and (m —n)/2 < a < (m —1)/2. Then we have
[lal=21D, e P" ()

<C -
sy < Cleliza

Further applications of the comparison principle will be given in the talk.
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