
分散型方程式の時空間評価式における比較原理とその応用

杉本　充

This talk is based on a recent joint work with Michael Ruzhansky. We introduce a
useful tool to derive new smoothing estimates from known ones. That is a comparison
principle for solutions u(t, x) = eitf(Dx)φ(x) and v(t, x) = eitg(Dx)φ(x) to evolution
equations with operators f(Dx) and g(Dx), where t ∈ R and x ∈ Rn:{

(i∂t + f(Dx)) u(t, x) = 0,

u(0, x) = φ(x)
and

{
(i∂t + g(Dx)) v(t, x) = 0,

v(0, x) = φ(x).

In the below, we write x = (x1, . . . , xn), ξ = (ξ1, . . . , ξn), and Dx = (D1, D2 . . . , Dn)
where Dj denotes Dxj

(j = 1.2. . . . , n). In the case n = 1, we neglect x′ = (x2, . . . , xn)
in natural way and just write x = x1, ξ = ξ1, and Dx = D1. Similarly in the case
n = 2, we use the notation (x, y) = (x1, x2), (ξ, η) = (ξ1, ξ2), and (Dx, Dy) = (D1, D2).

Theorem 1. Suppose n = 1. Let f, g ∈ C1(R) be real-valued and strictly monotone
on the support of a function χ on R. Let σ, τ ∈ C0(R) be such that, for some A > 0,
we have

|σ(ξ)|
|f ′(ξ)|1/2

≤ A
|τ(ξ)|

|g′(ξ)|1/2

for all ξ ∈ supp χ satisfying f ′(ξ) ̸= 0 and g′(ξ) ̸= 0. Then we have

∥χ(Dx)σ(Dx)e
itf(Dx)φ(x)∥L2(Rt) ≤ A∥χ(Dx)τ(Dx)e

itg(Dx)φ(x)∥L2(Rt)

for all x ∈ R. Consequently, for general n ≥ 1 and for any function w on Rn, we
have

∥w(x)χ(Dj)σ(Dj)e
itf(Dj)φ(x)∥L2(Rt×Rn

x)

≤ A∥w(x)χ(Dj)τ(Dj)e
itg(Dj)φ(x)∥L2(Rt×Rn

x),

where j = 1, 2, . . . , n.

Theorem 2. Suppose n = 2. Let f, g ∈ C1(R2) be real-valued functions such that,
for almost all η ∈ R, f(ξ, η) and g(ξ, η) are strictly monotone in ξ on the support of
a function χ on R2. Let σ, τ ∈ C0(R2) be such that, for some A > 0, we have

|σ(ξ, η)|
|∂f/∂ξ(ξ, η)|1/2

≤ A
|τ(ξ, η)|

|∂g/∂ξ(ξ, η)|1/2
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for all (ξ, η) ∈ supp χ satisfying ∂f/∂ξ(ξ, η) ̸= 0 and ∂g/∂ξ(ξ, η) ̸= 0. Then∥∥χ(Dx, Dy)σ(Dx, Dy)e
itf(Dx,Dy)φ(x, y)

∥∥
L2(Rt×Ry)

≤ A∥χ(Dx, Dy)τ(Dx, Dy)e
itg(Dx,Dy)φ(x, y)∥L2(Rt×Ry)

for all x ∈ R. Consequently, for general n ≥ 2 and for any function w on Rn−1 we
have

∥w(x̌k)χ(Dj, Dk)σ(Dj, Dk)e
itf(Dj ,Dk)φ(x)∥L2(Rt×Rn

x)

≤ A∥w(x̌k)χ(Dj, Dk)τ(Dj, Dk)e
itg(Dj ,Dk)φ(x)∥L2(Rt×Rn

x),

where j ̸= k and x̌k = (x1, . . . , xk−1, xk+1, . . . , xn).

We also have a comparison result for radially symmetric case. In the below, we
denote the set of the positive real numbers (0,∞) by R+.

Theorem 3. Let f, g ∈ C1(R+) be real-valued and strictly monotone on the support
of a function χ on R+. Let σ, τ ∈ C0(R+) be such that, for some A > 0, we have

|σ(ρ)|
|f ′(ρ)|1/2

≤ A
|τ(ρ)|

|g′(ρ)|1/2

for all ρ ∈ supp χ satisfying f ′(ρ) ̸= 0 and g′(ρ) ̸= 0. Then we have

∥χ(|Dx|)σ(|Dx|)eitf(|Dx|)φ(x)∥L2(Rt) ≤ A∥χ(|Dx|)τ(|Dx|)eitg(|Dx|)φ(x)∥L2(Rt)

for all x ∈ Rn. Consequently, for any function w on Rn, we have

∥w(x)χ(|Dx|)σ(|Dx|)eitf(|Dx|)φ(x)∥L2(Rt×Rn
x)

≤ A∥w(x)χ(|Dx|)τ(|Dx|)eitg(|Dx|)φ(x)∥L2(Rt×Rn
x).

Let us now give an important examples of the use of the comparison principle.
We can conclude that many smoothing estimates for the Schrödinger type equations
of different orders are equivalent to each other. Indeed, applying Theorem 1 in two
directions, we immediately obtain that for n = 1 and l, m > 0, we have

(1)
∥∥|Dx|(m−1)/2eit|Dx|mφ(x)

∥∥
L2(Rt)

=

√
l

m

∥∥∥|Dx|(l−1)/2eit|Dx|lφ(x)
∥∥∥

L2(Rt)

for every x ∈ R, assuming that supp φ̂ ⊂ [0, +∞) or (−∞, 0]. Applying Theorem 2,
we similarly obtain that for n = 2 and l, m > 0, we have

(2)
∥∥∥|Dy|(m−1)/2eitDx|Dy |m−1

φ(x, y)
∥∥∥

L2(Rt×Ry)

=
∥∥∥|Dy|(l−1)/2eitDx|Dy |l−1

φ(x, y)
∥∥∥

L2(Rt×Ry)

for every x ∈ R. On the other hand, in the case n = 1, we have easily

(3)
∥∥eitDxφ(x)

∥∥
L2(Rt)

= ∥φ∥L2(Rx) for all x ∈ R,

which is a straightforward result of the fact eitDxφ(x) = φ(x + t). By using equality
(3), we can estimate the right hand sides of equalities (1) and (2) with l = 1, and as a
result, we have easily the following variety of pointwise estimates in low dimensions:
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Proposition 1. Suppose n = 1 and m > 0. Then we have∥∥|Dx|(m−1)/2eit|Dx|mφ(x)
∥∥

L2(Rt)
≤ C∥φ∥L2(Rx)

for all x ∈ R. Suppose n = 2 and m > 0. Then we have∥∥∥|Dy|(m−1)/2eitDx|Dy |m−1

φ(x, y)
∥∥∥

L2(Rt×Ry)
≤ C∥φ∥L2(R2

x,y)

for all x ∈ R.

Proposition 1 with the special case m = 2 was shown by Kenig, Ponce and Vega
[1, p.56] (n = 1) and Linares and Ponce [2, p.528] (n = 2). But we can say that
these result, together with their generalization, are just corollaries of the elementary
estimate (3).

By using the comparison principle for radially symmetric case, we have also another
type of equivalence of smoothing estimates. In fact, by Theorem 3, we immediately
obtain ∥∥∥|x|β−1|Dx|βeit|Dx|2φ

∥∥∥
L2(Rt×Rn

x)
=

∥∥|x|β−1|Dx|β−1+m/2eit|Dx|mφ
∥∥

L2(Rt×Rn
x)

=
∥∥|x|α−m/2|Dx|αeit|Dx|mφ

∥∥
L2(Rt×Rn

x)
,

where m > 0 and α = β − 1 + m/2. On the other hand, we know the estimate

(4)
∥∥∥|x|β−1|Dx|βeit|Dx|2φ(x)

∥∥∥
L2(Rt×Rn

x)
≤ C∥φ∥L2(Rn

x) (1 − n/2 < β < 1/2),

which was given by Sugimoto [3, Theorem 1.1]. Noticing that 1 − n/2 < β < 1/2 is
equivalent to (m − n)/2 < α < (m − 1)/2, we have the following generalization of
estimate (4):

Proposition 2. Suppose m > 0 and (m − n)/2 < α < (m − 1)/2. Then we have∥∥∥|x|α−m/2|Dx|αeit|Dx|mφ(x)
∥∥∥

L2(Rt×Rn
x)

≤ C∥φ∥L2(Rn
x).

Further applications of the comparison principle will be given in the talk.
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