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1 Introduction

In [5] M. Schatzman treats a problem which describs movement of a string that hits to
an obstacle. This problem is formulated as in the following way. In [5] a slightly general
obstacle is considered. However for the sake of simplicity we consider the case that the
obstacle is a plane, just like as a table.

Given uy € W2(0,1) and vy € L*(0,1) with ug > 0 and uy(0) = ug(1) = 1, we treat
a second order hyperbolic differential inequality

(1) Ugg — Ugz = 0

in the sense of distributions and

(2) spt (ug — ugze) C {u =0}
with initial conditions 5

(3) u(0, z) = uo, E(O,x) =

and a boundary condition
(4) u(t,0) = u(t,1) = 1.
A weak solution to (1)—(4) is defined as follows:
Definition 1 A function u : (0,7) — L?(0,1) is said to be a weak solution to (1)—(4)
in (0,7) if
i) u e W((0,T) x (0,1)), u(t,r) >0 for L%a.e. (t,z)
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ii) 8-11\1% u(t) = up in L*(0,1)
iii) u(t,0) = u(t, 1) = 1

iv) for any ¢ € C9([0,T); L*(0,1)) N Wy *((0,T) x (0,1)) with ¢ > 0,
T 1 T 1 1
- /0 /0 we(t) e (1) deedt + /0 /0 Upddt — /0 voddz > 0.

v) for any ¢ € C§([0,T); L*(0,1)) N Wy *((0,T) x (0,1)) with spt ¢ C ({u = 0})°,
T 1 T 1 1
. /0 /0 we(£)e(t)ddt + /0 /0 Uppdzdt — /0 voddz = 0.

In [5] M. Schatzman solves this equation in a slightly classical way. Moreover unique-
ness is also proved under an assumption that a solution satisfies an equality which assures
the energy conservation law. In [3] K. Maruo constructs a solution to this problem by
the use of Yosida approximation. The purpose of this talk is to construct a solution to
this problem in minimizing movement method. Readers should remark that in general
approximation by minimizing movement method is different from Yosida approximation
(compare to [1]).



2 Minimizing movement method
We define a functional ® : L?(0,1) — [0, 00] by

0 if w(z) >0 for each z
oo if otherwise.

B(u) = {

Put J(u) = % [y [Vul?dz + ®(u) if w € W2(0,1) N D(®) with u(0) = u(l) = 1, = oo
if otherwise. Note that ug € D(J). For a positive number h we construct a sequence
{w;}°_, in the following way. For [ = 0 we let ug be as above and for [ = —1 we set

U_1 = ug — hvg. For [ > 1, u; is defined as the minimizer of the functional

1

Fi(u) = o2

lu = 2wy + w—s|* + J(u)

in D(J), namely, in W'2(0,1) N D(®) with u(0) = u(1l) = 1. The existence of the
minimizer is assured by lower semicontinuity of J and its boundedness from below. By
the use of convexity of J we have

Lemma 1 (Energy inequality)

1 1
Szl = el + T < 5 el + T (o).

Next we define approximate solutions u"(t) and u"(t) for t € (—h, 00) as follows: for
({—1h<t<Ih
t—(—1)h lh—t

o) R R L S
and
(6) ﬂh(t) = uy.
Then Lemma 1 shows
| T —_h Lt 2
™) 5 | e OPde + I @ (0) < 5 [ feolde + T (wo)

for each t € | J((I — 1)h,lR).

=0

Proposition 1 [t holds that

1. {llulll oo (0,00 2201y} 8 uniformly bounded with respect to h

)

-~ W

).
).
). @W'(t,x) >0 for each x and L'-a.c. t
).
5).



Then there ezist a sequence {h;} with h; — 0 as j — oo and a function u such that

4). for any T > 0, u" converges to u as j — oo weakly star in L>=((0,T); L*(0,1))

ul' converges to u; as j — oo weakly star in L>((0,00); L*(0,1))

S Ot

(uh), converges to u, as j — oo weakly star in L>°((0,00); L*(0, 1))

~J

for any T > 0, u converges to u as j — oo strongly in L>=((0,T); L?(0,1))

oo

for any T > 0, u" converges to u as j — oo strongly in L>=((0,T); L*(0,1))

).
).
).
).
).
).

9). s-lim u(t) = up in L?(0,1).

t\.to

3 Main Theorem

Our main theorem is as follows:

Theorem 1 The function u as in Proposition 1 is a weak solution to (1)—(4).

w — 21 + U2

Outline of Proof. Since v, is the minimizer of F(v), we have 0F;(u;) =

12
— 2uy_ _
dJ(w) 2 0. Since J(u) = % [ |Vu|*dz+®(u), we have hl Uzh; Rl — Ay +0P(w;) 3
0. Namely, noting (5) and (6), we have, for each h,
Lyl(t) —ul(t —h 1
® et o) - o)z - [ O g0 [ vuod
0 0

for £1-a.e. t € (0,00). Proposition 1 implies u} and (a"), converge weakly star to u; and
u,, respectively, in L°°((0,00); L%(0,1)). Thus, if ¢ > 0, since ®(u" + ¢) = ®(u") = 0, (8)
implies iv) of the definition of a solution by letting h — 0.

Lemma 2 Let ¢ € L?(0,1) and suppose that ¢' € L*(0,1) and p(0) = 0. Then
1/2 1/2
lellzwa) < V2Iel o 1€ o

Since we have .
9) W) — uh(t') = / ul'(s)ds,
t/
for each ¢, t > 0, Proposition 1 1) implies
(10) lu(#) = u" ()| 20,0y < Clt =1,

where C' is independent of h. In the sequel C' always denotes a generic constant which is
independent of C'. By proposition 1 4) we have

(11) 1(u")a () = (@")a () 2000) < €
By (10), (11), and Lemma 2 we have

(12) [l (t) = u" ()| o0y < Clt = #]"2.
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This fact implies
" (t, ) —u(s,y)] < Ju"(t @) — Ut y)| + W (Ey) — u (s, )]
= |/ 2t €)dE] + U () — " (s, )
<l e omyzzo.ay |z =y + Clt — 5|2

Thus by Proposition 1 4) u" is equicontinuous in (0, T) x (0, 1) with respect to h. Further-
more, letting s = 0 and y = 0, we find {u} is uniformly bounded in L*°((0,7T) x (0,1)).
Hereby we have by Ascoli-Arzela theorem that, passing to a further subsequence if nec-
essary, {u"} converges uniformly in (0,7) x (0,1) to u. Let ¢ € CQ([0,T); L*(0,1)) N
Wy ?((0,T) x (0,1)) satisfy spt ¢ C ({u = 0})¢ = {u > 0}. Here remark that u is contin-
uous with respect to ¢ and x. Thus there should be a positive constant ¢ such that u > o
in spt ¢. We may suppose that sup || < o. Since u"(t,2) converges uniformly to u(t, ),

lu(t,z) — u"(t,x)| < i if h is sufficiently small. Thus we have

1 1
uh+¢:u+¢+uh—u2u—|¢|—|u—uh|20—50—5020.
Hence u" + ¢ > 0 in (0,T) x (0,1). Noting that u"(¢, ) = u"(lh,z) for (I —1)h <t < lh,
we find 7" + ¢ > 0 in (0, )X(O 1). Hence (8) implies

0= +0) - o) > - [ O o g @) 0,a0

for £'-a.e. t. Replacing ¢ with —¢ we have the converse inequality and thus, for £!-a.e.
2

- [P 4 ayan— [ )00 =

Integrating over (0,7") and letting h — 0, we have v) of the definition of a solution.
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