The local properties of critical points
obtained by a mountain pass theorem
on the case without the Palais-Smale condition
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We are concerned with a local property around the critical points ob-
tained by the mountain pass theorem under the absence of the Palais-Smale
condition. We start with recalling the standard mountain pass lemma.

Let a real Banach space (X, ||-||), a C! functional I : X — R, and
ug, u; € X be given. We take

I'={vy € C([0,1], X) [ 7(0) = uo, (1) = u1}

and call
¢y = inf max I (1)
yell v
the mountain pass value of 1. We call the triplet (I, up, u;) has the mountain
pass structure if
cy > max {I(UQ),I(U1)} (2)
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holds. Next, {uy} C X is called a Palais-Smale sequence if
I(ug) ¢ and  I'(ug) — 0in X* (3)

for some ¢ € R and the Palais-Smale condition, denoted by (PS), means
that any Palais-Smale sequence {u;} C X admits a subsequence converging
strongly in X. The following is one version of the mountain pass theorem
originated with Ambrosetti-Rabinowitz [1]:

Theorem 1 ([2]) Suppose the mountain pass structure (2) and the Palais-
Smale condition (PS). Then, the mountain pass value cr defined by (1) is
a critical value of 1, i.e., there is v € X satisfying I'(v) = 0 and I(v) = c;.

The Palais-Smale condition (PS) is known to be weakened to (PS),,,
which means that any sequence {ur} C X satisfying (3) with ¢ = ¢; has
a strongly converging subsequence. See, e.g., [7], p.101. However, lack of
these conditions is observed in many cases. Among them is the functional

1 1
I\(u) = 3 /M IVul? — Mog <|M /M e“)

defined for u € E, where (M, g) is a compact orientable Riemannian mani-
fold without boundary and

E:{ueﬂl(M)\/MUZO}.

Its Euler-Lagrange equation

is called the mean field equation studied by many authors. In this example,
lack of the Palais-Smale condition arises because the Palais-Smale sequence
is not necessarily bounded when A > 8. See [5, 6] and the references therein
for the“bubbling” of such sequences.

In this problem, the trivial solution v = 0 is linearly stable for A < p; | M|
and I is unbounded for A > 87, where p; is the first eigenvalue of —Ay, e.g.,
p1 = 4n% if M is a flat torus with the fundamental cell domain [0, 1] x [0, 1].
Thus, we obtain the mountain pass structure in 87 < A < py [M|, ie., it
holds that (2) for vo = 0 and vy # 0 with ||v;||z > 1. Moreover,

log 1/6” >logeﬁfMU:0
M| Jo B
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by Jensen’s inequality, and therefore, I)(u) is a non-increasing function of A
for fixed w. This provides (Iy,0,v;) for some fixed v; € E with the mountain
pass structure for every X in the fixed interval [Ag, pu1|M|) C (87, pu1|M]).
Consequently we are able to assume ¢(\) = ¢j, is a non-increasing function

of A and
d

L) (= )
exists for a.e. A, which guarantees a bounded (PS).(\) sequence when ¢/())
exists. These arguments are sometimes called the Struwe’s monotonicity
trick. In spite of the lack of the Palais-Smale condition, we still have an
analogous result to Theorem 1 by this monotonicity trick.

Theorem 2 ([8]) For a.e. X € (8,1 |M]|), the mountain pass value

c(A) (= cry)
s a critical value of the above defined Iy.

Concerning the existence of the non-trivial solution, the above resid-
ual set of A\ is compensated by the blowup analysis, i.e., the quantized
blowup mechanism of the solution sequence [4]. More precisely, any A €
(87, uq |M]) \ 8N admits a non-trivial solution to (4) by this mechanism.

There is, on the other hand, study on the local structure of the mountain
pass critical point.

Definition 3 ([2]) Given a critical point v of I € C*(X,R), we say the
following:

1. It is a local minimum if there is an open neighbourhood of v, denoted
by V such that I(u) > I(v) for any u € V.

2. It is mountain pass type if any open neighbourhood U of v has the
properties that U N I% # O and U N I is not path-connected, where
d=1(v) and

I"={ue X |I(u)<d}.

Theorem 4 ([2]) The critical value in Theorem 1 can be either a local
minimum or mountain pass type.

The proof of the above theorem also uses the Palais-Smale condition,
more precisely, (PS)r,. The purpose of this talk is to present that Theorems
2 and 4 are compatible.



Theorem 5 (Main Theorem) In Theorem 2, if ¢ (\) exists and A & 87N,
then there is a local minimum or a mountain pass type critical point with
the critical value c(\).

We use the argument of [3] developed for the proof of Theorem 2.
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