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We are concerned with a local property around the critical points ob-
tained by the mountain pass theorem under the absence of the Palais-Smale
condition. We start with recalling the standard mountain pass lemma.

Let a real Banach space (X, ∥·∥), a C1 functional I : X → R, and
u0, u1 ∈ X be given. We take

Γ = {γ ∈ C([0, 1], X) | γ(0) = u0, γ(1) = u1}

and call
cI = inf

γ∈Γ
max

γ
I (1)

the mountain pass value of I. We call the triplet (I, u0, u1) has the mountain
pass structure if

cI > max {I(u0), I(u1)} (2)
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holds. Next, {uk} ⊂ X is called a Palais-Smale sequence if

I(uk) → c and I ′(uk) → 0 in X∗ (3)

for some c ∈ R and the Palais-Smale condition, denoted by (PS), means
that any Palais-Smale sequence {uk} ⊂ X admits a subsequence converging
strongly in X. The following is one version of the mountain pass theorem
originated with Ambrosetti-Rabinowitz [1]:

Theorem 1 ([2]) Suppose the mountain pass structure (2) and the Palais-
Smale condition (PS). Then, the mountain pass value cI defined by (1) is
a critical value of I, i.e., there is v ∈ X satisfying I ′(v) = 0 and I(v) = cI .

The Palais-Smale condition (PS) is known to be weakened to (PS)cI ,
which means that any sequence {uk} ⊂ X satisfying (3) with c = cI has
a strongly converging subsequence. See, e.g., [7], p.101. However, lack of
these conditions is observed in many cases. Among them is the functional

Iλ(u) =
1
2

∫
M

|∇u|2 − λ log
(

1
|M |

∫
M

eu

)
defined for u ∈ E, where (M, g) is a compact orientable Riemannian mani-
fold without boundary and

E =
{

u ∈ H1(M) |
∫

M
u = 0

}
.

Its Euler-Lagrange equation

−∆gv = λ

(
ev∫
Ω ev

− 1
|M |

)
,

∫
M

v = 0 (4)

is called the mean field equation studied by many authors. In this example,
lack of the Palais-Smale condition arises because the Palais-Smale sequence
is not necessarily bounded when λ ≥ 8π. See [5, 6] and the references therein
for the“bubbling” of such sequences.

In this problem, the trivial solution v = 0 is linearly stable for λ < µ1 |M |
and Iλ is unbounded for λ > 8π, where µ1 is the first eigenvalue of −∆g, e.g.,
µ1 = 4π2 if M is a flat torus with the fundamental cell domain [0, 1]× [0, 1].
Thus, we obtain the mountain pass structure in 8π < λ < µ1 |M |, i.e., it
holds that (2) for v0 = 0 and v1 ̸= 0 with ∥v1∥E ≫ 1. Moreover,

log
(

1
|M |

∫
Ω

ev

)
≥ log e

1
|M|

R

M v = 0
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by Jensen’s inequality, and therefore, Iλ(u) is a non-increasing function of λ
for fixed u. This provides (Iλ, 0, v1) for some fixed v1 ∈ E with the mountain
pass structure for every λ in the fixed interval [λ0, µ1|M |) ⊂ (8π, µ1|M |).
Consequently we are able to assume c(λ) ≡ cIλ

is a non-increasing function
of λ and

d

dλ
c(λ)(≡ c′(λ))

exists for a.e. λ, which guarantees a bounded (PS)c(λ) sequence when c′(λ)
exists. These arguments are sometimes called the Struwe’s monotonicity
trick. In spite of the lack of the Palais-Smale condition, we still have an
analogous result to Theorem 1 by this monotonicity trick.

Theorem 2 ([8]) For a.e. λ ∈ (8π, µ1 |M |), the mountain pass value

c(λ)(≡ cIλ
)

is a critical value of the above defined Iλ.

Concerning the existence of the non-trivial solution, the above resid-
ual set of λ is compensated by the blowup analysis, i.e., the quantized
blowup mechanism of the solution sequence [4]. More precisely, any λ ∈
(8π, µ1 |M |) \ 8πN admits a non-trivial solution to (4) by this mechanism.

There is, on the other hand, study on the local structure of the mountain
pass critical point.

Definition 3 ([2]) Given a critical point v of I ∈ C1(X,R), we say the
following:

1. It is a local minimum if there is an open neighbourhood of v, denoted
by V such that I(u) ≥ I(v) for any u ∈ V .

2. It is mountain pass type if any open neighbourhood U of v has the
properties that U ∩ Id ̸= ∅ and U ∩ Id is not path-connected, where
d = I(v) and

Id = {u ∈ X | I(u) < d} .

Theorem 4 ([2]) The critical value in Theorem 1 can be either a local
minimum or mountain pass type.

The proof of the above theorem also uses the Palais-Smale condition,
more precisely, (PS)Ic . The purpose of this talk is to present that Theorems
2 and 4 are compatible.
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Theorem 5 (Main Theorem) In Theorem 2, if c′(λ) exists and λ ̸∈ 8πN,
then there is a local minimum or a mountain pass type critical point with
the critical value c(λ).

We use the argument of [3] developed for the proof of Theorem 2.
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