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1 Introduction

In this note, we consider the approximation of the intermediate vector boson model

at low energy by the four-fermion interaction model for the weak interaction of ele-

mentary particles. The intermediate vector boson model is described by the following

Dirac-Proca equations in 3 + 1 space time dimensions

iγµ∂µψ =
1

2
γµAµ(I − γ5)ψ, (t, x) ∈ R1+3, (1)

∂µ∂
µAν +M2Aν − ∂ν∂µA

µ =
1

2
⟨γ0γν(I − γ5)ψ,ψ⟩, (2)

(t, x) ∈ R1+3,

ψ(0, x) = ψ0(x), x ∈ R3, (3)

Aν(0, x) = aν(x), ∂0A
ν(0, x) = bν(x), x ∈ R3, (4)

ν = 0, · · · , 3,

and the four-fermion interaction model is described by the following Dirac equation

with cubic nonlinearity

iγµ∂µψ =
1

4M2
γµ⟨γ0γµ(I − γ5)ψ,ψ⟩(I − γ5)ψ, (t, x) ∈ R1+3, (5)

ψ(0, x) = ψ0(x), x ∈ R3, (6)

where M > 0, I is the 4 × 4 identity matrix, γµ, µ = 0, · · · , 3 are 4 × 4 matrices

satisfying the relations γµγν + γνγµ = 2gµνIand (γµ)∗ = gµνγ
ν , γ5 = iγ0γ1γ2γ3
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and ⟨z, w⟩ =
∑4

j=1 zjwj for z = (z1, · · · , z4), w = (w1, · · · , w4) ∈ C4. Here and

hereafter, we follow the convention that Greek indices take values in {0, 1, 2, 3} while

Latin indices are valued in {1, 2, 3}. Indices repeated are summed. The space R1+3

is the four dimensional Euclidean space equipped with the flat Minkowski metric

(gµν) = diag(1,−1,−1,−1). Indices are raised and lowered using the metric gµν and

its inverse gµν . We put x0 = t and ∂µ = ∂/∂xµ.

ψ is a C4 valued function and Aµ, µ = 0, · · · , 3 are real-valued functions represent-

ing vectors in R1+3. The function ψ denotes the field of massless fermion with spin

1/2 and the functions Aµ, µ = 0, · · · , 3 denote the field of massive boson with spin

1. Equations (1) and (2) are called the Dirac and the Proca equations, respectively.

This system appears in the intermediate vector boson model for the weak interaction

of elementary particles before the adoption of the unified theory of electro-weak inter-

actions (see [1, Section 10.1], [23] and [21]). Equation (5) is the Dirac equation with

cubic nonlinearity, which corresponds to the four-fermion interaction. If the mass M

of the intermediate vector boson is sufficiently large (or the energy of the boson is

small relatively to the squared mass M2), one may think that the system (1) and (2)

is well approximated by equation (5) (see [1, Section 10.5] and [24, Section 8.3.2]).

This is called the Fermi theory which gives an excellent description of four-fermion

coupling phenomena involving the weak interaction at low energy such as the beta de-

cay of a neutron into a proton, an electron and an electron antineutrino. In this note,

we consider justifying this approximation of the intermediate vector boson model at

low energy by the four-fermion interaction in a mathematically rigorsous sense.

If ψ and Aν satisfy (1), then it is easily verified that equation (2) is equivalent to

the following:

□Aν +M2Aν =
1

2
⟨γ0γν(I − γ5)ψ,ψ⟩, (t, x) ∈ R1+3, (7)

∂µA
µ = 0, (t, x) ∈ R1+3, (8)

where □ = ∂µ∂
µ. Indeed, we take the derivatives in xν of (2) and sum the result-

ing equations over ν to obtain (8), under which equation (2) is equivalent to (7).

The constraint (8) is called the Lorenz gauge condition, which used to be called the

“Lorentz” gauge condition because of the confusion between Ludvig Lorenz and Hen-

drik Lorentz. Accordingly, the initial data (aν , bν) are chosen so that they satisfy (8)

for t = 0. In that case, the constraint (8) is automatically satisfied as long as the
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solutions Aν exist. Thus, the Cauchy problem (1)-(4) is reduced to (1), (3), (4) and

(7) with (8) at t = 0.

Remark 1.1. We should more precisely state the relation between the Dirac-Proca

equations (1), (7) and the Lorenz gauge condition (8). If (ψ,Aν) are solutions of

the Cauchy problem (1), (7), (8) and (3), (4), then the initial data (ψ0, a
ν , bν) must

satisfy the following compatibility condition relevant to the Lorenz gauge.

b0 + ∂ja
j = 0, (9)

∆a0 −M2a0 +
1

2
⟨(I − γ5)ψ0, ψ0⟩+ ∂jb

j = 0. (10)

Conversely, if the initial data (ψ0, a
ν , bν) satisfy the above gauge constraint at t = 0,

then the solutions Aν , 0 ≤ ν ≤ 3 for (1), (7) and (4) automatically satify the Lorenz

gauge condition (8) for all times. Therefore, after we have imposed the above gauge

constraint on the initial data, we do not have to consider the Lorenz gauge condition

(8).

We conclude this section with several notations given. For a Banacha space X and

a nonnegative number k, let oX(M−k) and OX(M−k) denote various terms of smaller

order and of not larger order, respectively, than M−k as M → ∞. Let UD(t) denote

the evolution operator of the free Dirac equation.

2 Theorem and Sketch of Proof

In this section, we state our theorem concerning the justification of the four-fermion

interaction approximation and give a sketch of the proof.

Theorem 2.1. Let ε be any small positive constant. Assume that (ψ0, a
ν
M , b

ν
M ) ∈

H1+ε ×H1+ε ×Hε, guage compatibility conditions (9) and (10) hold and the initial

data (aνM , b
ν
M ) satisfy

∥aνM∥H1+ε = o
(
M−1

)
, ∥bνM∥Hε = o

(
1
)

(M → ∞). (11)

Then, there exist a positive constant T independent ofM and unique solutions (ψ,Aν)

of (1), (3), (4), (7) and (8) such that

ψ ∈ C([−T, T ];H1+ε), Aν ∈ C([−T, T ];H1+ε) ∩ C1([−T, T ];Hε), (12)

∥ψ∥C([−T,T ];H1+ε) = O
(
1
)
, ∥Aν∥C([−T,T ];H1+ε) = o

(
1
)

(M → ∞) (13)
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and

ψ(t) = UD(t)ψ0 −
i

4M2

∫ t

0

UD(t− s)γ0γµ⟨γ0γµ(I − γ5)ψ,ψ⟩(I − γ5)ψ(s) ds (14)

+oHε

(
M−2

)
uniformly on [−T, T ] (M → ∞).

Remark 2.2. (i) Formula (14) may be thought of as the four-fermion interaction

approximation of the intermedate vector boson model at low energy. The coefficient

before the integral on the right hand side of (14) is called the Fermi constant and it

is known that it has dimensions of inverse squared mass. Formula (14) agrees with

this physical observation. Theorem 2.1 implies that the solutions (ψ,Aµ) converge to

(UD(t)ψ0, 0) as M → ∞. That is, four fermions get to have almost no interaction

with each other as the mass of intermediate boson increases. This is why the weak

interaction is so weak at low energy (see [1, the discussion from line 5 on page 342 to

line 3 on page 343] and [24, Section 6.1.2 on pages 103 and 104]).

(ii) Assumption (11) seems to be natural, because in the physics context, it is always

assumed that the kinetic energy part (∂2t −∆)Aν is much smaller than the rest energy

partM2Aν at low energy. This and (7) suggest that if the solution ψ of the Dirac equa-

tion has the size independent of M , then aν should be O(M−2) and ∂2tA
ν(0) should

be O(1) (M → ∞), which aslo requires, together with interpolation, that bν should

be O(M−1) (M → ∞). For example, we note that for u ∈ W 2,2(−T, T ;L2(R3)), we

have by integration by parts∥∥√φ∂tu∥∥2L2([−T,T ]×R3)
≤ C

(
∥u∥2L2([−T,T ]×R3)+∥∂2t u∥L2([−T,T ]×R3)∥u∥L2([−T,T ]×R3)

)
,

where φ(t) is a time cut-off function in C∞(R) such that φ(t) = 0 (|t| ≥ 4T/5),

φ(t) = 1 (|t| ≤ T/2) and 0 ≤ φ ≤ 1.

(iii) In order to show the existence time T is independent of M , in Theorem 2.1 we

have only to assume the following weaker condition than (11):

∥aνM∥H1+ε = O
(
M−1/2

)
, ∥bνM∥Hε = O

(
1
)

(M → ∞). (15)

The local existence of solutions (ψ,Aν) of (1), (3), (4), (7) and (8) follows immedi-

ately from the Stricharz estimate (see [9, Proposition 3.1 on pages 58-59], [20, Theo-

rem4.2 on pages 99-100], [10, Corollary1.3 on pages 957-958] and [11, Lemma 5 on page

296] ). We now see how the Strichartz estimate depends on M for the Klein-Gordon
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equation with massM . Let N denote a dyadic number and let PN be the Littlewood-

Paley operator. We put ⟨∇⟩M = F−1(|ξ|2 +M2)1/2F and ⟨N⟩M = (|N |2 +M2)1/2.

For the d-dimensional case, we have by the stationary phase method∥∥eit⟨∇⟩MPNf
∥∥
L∞(Rd)

≲ N⟨N⟩(d−1)/2
M |t|−(d−1)/2∥PNf∥L1(Rd)

(see, e.g., [11, (2.4) on page 296], [8, (1.2) on page 344] and [14]), where the implicit

constant is independent ofM . We note that when d = 3, the power (d−1)/2 of ⟨N⟩M
on the right hand side is equal to 1. Therefore, we can conclude that when d = 3, the

factor ⟨N⟩M is harmless, because the operator that we have to estimate is not eit⟨∇⟩M

but eit⟨∇⟩M /⟨∇⟩M . We only use the Strichartz estimate which does not depend on

M and so the existence time T can be chosen independent of M . The proof of the

local existence is the same as that in [8] and [18].

We next breifly explain how to derive the formula (14). The Cauchy problem (1),

(7) and (3), (4) can be rewritten as follows.

ψ(t) =UD(t)ψ0 −
i

2

∫ t

0

UD(t− s)γ0γµAµ(s)(I − γ5)ψ(s) ds, (16)

Aµ(t) =cos t⟨∇⟩MaµM +
sin t⟨∇⟩M
⟨∇⟩M

bµM (17)

+
1

2

∫ t

0

sin(t− s)⟨∇⟩M
⟨∇⟩M

⟨γ0γµ(I − γ5)ψ(s), ψ(s)⟩ ds.

By applying the integration by parts to the integral on the right hand side of (17),

we have

Aµ(t)= cos t⟨∇⟩MaµM +
sin t⟨∇⟩M
⟨∇⟩M

bµM

+
1

2

[
cos(t− s)⟨∇⟩M

⟨∇⟩2M
⟨γ0γµ(I − γ5)ψ(s), ψ(s)⟩

]s=t

s=0

−1

2

∫ t

0

cos(t− s)⟨∇⟩M
⟨∇⟩2M

∂0⟨γ0γµ(I − γ5)ψ(s), ψ(s)⟩ ds

=cos t⟨∇⟩MaµM +
sin t⟨∇⟩M
⟨∇⟩M

bµM +
1

2M2
⟨γ0γµ(I − γ5)ψ,ψ⟩ (18)

+
1

2

( 1

⟨∇⟩2M
− 1

M2

)
⟨γ0γµ(I − γ5)ψ,ψ⟩ −

cos t⟨∇⟩M
2⟨∇⟩2M

⟨γ0γµ(I − γ5)ψ0, ψ0⟩

−1

2

∫ t

0

cos(t− s)⟨∇⟩M
⟨∇⟩2M

∂0⟨γ0γµ(I − γ5)ψ(s), ψ(s)⟩ ds.
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When we insert the right hand side of (18) into (16), the third term on the right hand

side of (18) corresponds to the second term on the right hand side of (14) and the

rest terms on the right hand side of (18) can be regarded as smaller order terms than

M−2 as M → ∞. This is because the fourth term on the right hand side of (18)

includes the factor
(

1
⟨∇⟩2M

− 1
M2

)
and the fifth and the sixth terms include the rapid

oscillation factors as M → ∞, which leads to extra decay as M → ∞. Furthermore,

the assumption (11) implies that the time integral of the first and the second terms

on the right hand side of (18) is oHε(M−2) as M → ∞.
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