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One of the classical problems in potential theory is to specify a surface Γ for a prescribed
electric charge density µ in such a way that the uniform distribution of electric charges on
Γ produces the same potential (at least in a neighborhood of the infinity) as µ. To derive a
mathematical formulation of the problem precisely, let E be the fundamental solution of −∆
in RN , i.e.,

E(x) :=


− 1

2π
log |x| (N = 2),

1

N(N − 2)ωN |x|N−2
(N ≥ 3),

where ωN is the area of the unit ball in RN , and let HN−1⌊Γ denote the (N − 1)-dimensional
Hausdorff measure restricted to Γ. Then, the problem can be stated as follows: for a pre-
scribed finite Radon measure µ with compact support in RN , find a (N − 1)-dimensional
closed surface Γ enclosing a bounded domain Ω such that E ∗ µ = E ∗ HN−1⌊Γ in RN \ Ω,
i.e.,

(1)

∫
E(x− y) dµ(y) =

∫
Γ

E(x− y) dHN−1(y)
(
x ∈ RN \ Ω

)
.

It can be shown that (1) is equivalent to the identity

(2)

∫
h dµ =

∫
Γ

h dHN−1

holding for all harmonic functions h defined in a neighborhood of Ω.

Definition 1. A closed surface Γ satisfying (2) is called a quadrature surface of µ for har-
monic functions.

The mean value property of harmonic functions implies that (2) is valid when µ = NωNδ0
and Γ = ∂B(0, 1), where δ0 is the Dirac measure supported at the origin and B(0, 1) is the
unit ball in RN . Thus, the identity (2) can be seen as a generalization of the mean value
formula for harmonic functions.

The existence of a quadrature surface Γ of a prescribed µ has been studied by several
authors with different approaches. Developing the idea of super/subsolutions of Beurling [2],
Henrot [4] was able to prove that the existence of Γ is guaranteed when a supersolution and
a subsolution are available. Gustafsson & Shahgholian [3] followed a variational approach
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developed by Alt & Caffarelli [1], namely, they consider the minimization problem for the
functional

J(u) :=

∫
RN

(
|∇u|2 − 2fu+ χ{u>0}

)
dx,

and obtain the existence and regularity of a minimizer u. Then, u satisfies the Euler-Lagrange
equation

−∆u = f⌊Ω−HN−1⌊∂Ω, Ω = {u > 0},

and the existence of such a u implies that Γ = ∂Ω is a quadrature surface of µ with dµ = f dx.
However, as pointed out by Henrot [4], the uniqueness of a quadrature surface cannot

hold in general. The collapse of uniqueness seems to indicate a bifurcation phenomenon of
solutions to (2) with a parametrized measure µ = µ(t). Hence, toward understanding of the
uniqueness issue, we need to consider the corresponding family of surfaces Γ = Γ(t). In this
respect, it is natural to ask if there is an evolution equation describing the moving surfaces
{Γ(t)}t>0 such that each Γ(t) is a quadrature surface of a given parametrized measure µ(t).
As a matter of fact, when µ(t) = tδ0 + χΩ(0) and the identity (2) is replaced by

(3)

∫
h dµ =

∫
Ω

h dx,

it is known that the Hele-Shaw flow, a model of interface dynamics in fluid mechanics,
surprisingly, plays the desired role. Here, analogously, a domain Ω satisfying (3) is called a
quadrature domain of µ. Hence, the investigation of the evolution of quadrature domains
is reduced to that of the Hele-Shaw flow, and the latter has been successfully proceeded by
complex analysis and the theory of partial differential equations.

We introduce the following geometric evolution equation:

(4)

vn = p for x ∈ ∂Ω(t),

where

{ −∆p = µ for x ∈ Ω(t),

(N − 1)Hp+
∂p

∂n
= 0 for x ∈ ∂Ω(t),

where vn is the growing speed of ∂Ω(t) in the outer normal direction and H is the mean
curvature of ∂Ω(t). The following theorem shows that, as desired, for a given ∂Ω(0) as initial
surface, the solution to (4) turns out to be a one-parameter family of quadrature surfaces.
Moreover, we will see that (4) is the only possible flow having this property. Here, we call
{∂Ω(t)}0≤t<T a C3+α family of surfaces if each ∂Ω(t) is of C3+α and its time derivative is of
C2+α, namely, ∂Ω(t) can be locally represented as a graph of a function in the Hölder space
C3+α and its time derivative is in C2+α.

Theorem 2. Let {∂Ω(t)}0≤t<T be a C3+α family of surfaces, and assume that each ∂Ω(t) has
positive mean curvature. Then, each ∂Ω(t) is a quadrature surface of µ(t) := tµ+HN−1⌊∂Ω(0)
if and only if {∂Ω(t)}0≤t<T is a solution to (4).

2



At this point, we are led to a fundamental question: Does the equation (4) really possess
a unique smooth solution? The following theorem affirmatively answers this question. Here,
{∂Ω(t)}0≤t<T is called an h3+α solution if it is an h3+α family of surfaces and satisfies (4),
where h3+α is the so-called little Hölder space and is defined as the closure of the Schwartz
space S of rapidly decreasing functions in the topology of the Hölder space C3+α.

Theorem 3. There exists a local-in-time unique h3+α solution {∂Ω(t)}0≤t<T to (4) for any
h3+α initial surface ∂Ω(0) with positive mean curvature.
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